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Newton’s Laws 

1. Law (law of inertia): 

§  A resting body is just a special case of this law. 

2. Law (law of action): 

§  In other words: force and acceleration are proportional to each other; 
(the proportionality factor happens to be m). In aprticular, both force 
and acceleration have the same direction. 

 A body, which no forces act upon, continues to move with  
 constant velocity. 

If a force F acts on a body with mass m , then the body  
accelerates, and its acceleration is given by 
                                            F = m . a 
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3. Law (law of reaction): 

 

 

 

§  In school, you learn: "action= reaction" 

4. Law (law of superposition): 

If a force F, that acts on a body, is extended to another body, 
Then the opposite force –F acts on that other body. 

If a number offorces F1, …, Fn act on a point or body, then they  
can be accumulated by vector addition yielding one resulting  
force: 
                                        F = F1 + … + Fn .  
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Historical Digression 

§  Newton published these laws in his 
original book  

 Principia Mathematica  
(1687): 

§  Lex I. Corpus omne perseverare in statu 
suo quiescendi vel movendi uniformiter 
in directum, nisi quatenus illud a 
viribus impressis cogitur statum suum 
mutare. 

§  Lex II. Mutationem motus 
proportionalem esse vi motrici 
impressae, et fieri secundum lineam 
rectam qua vis illa imprimitur. 
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§  Definition: 
A spring-mass-system is a system, consisting of: 
1.  A set of point masses  mi  with positions  xi  and velocities   vi , i = 1…N ; 

2.  A set of springs                                     , where  sij  connects                   
masses i und j, with rest length l0 , spring constant ks (= stiffness)  and the 
damping coeffizient  kd  

§  Advantages: 
§  Very easy to program 

§  Ideally suited to study different kinds of solving methods 

§  Ubiquitous in games (cloths, capes, sometimes also for deformable objects) 

§  Disadvantages: 
§  Some parameters (in particular the spring constants) are not obvious, i.e., 

difficult to derive 

§  No volumetric effects (e.g., preservation of volume) 
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A Single Spring (plus Damper) 

§  Given: masses  mi  and mj  with positions  xi  , xj 

§  Let 

§  The force between particles i and j : 
1.  Force extended by spring: 

 
 

acts on mass  mi  in direction of mj 

2.  Force extended by damper : 

3.  Sum of forces : 

4.  Force on mj : 

j i 
rij 

-fij 

l0 

fij 

ks 

kd 

mi mj 

ri j =
xj � xi

⇥xj � xi⇥

f i j
s = ksri j(⇥xj � xi⇥ � l0)

f i j
d = kd((vj � vi)·ri j)ri j
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§  Notice: (4) → the momentum is preserved  

§ Momentum = force × mass =  F . m  

§  Note on terminology:  

§  German "Kraftstoß" = English "Impulse" = force × time 

§  German "Impuls"     = English "momentum" = force × mass       

§  Alternative Federkraft: 

§  A spring-damper element in reality: 

f

i j
s = ksri j

kxj � xik � l0
l0
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Simulation of a Single Spring 

§  From Newton’s law, we have: 

§  Convert differential equation (DE) of order 2 into DE of order 1: 

§  Initial values (boundary values): 

§  "Simulation" = "Integration of DE's over time" 

§  By Taylor expansion we get: 

§  Analogeously: 

à This integration scheme is called explicit Euler integration 

x(t + �t) = x(t) + �t ẋ(t) + O
�
�t2

⇥

v̇(t) = 1
m f(t)

ẋ(t) = v(t)

ẍ = 1
m f

v(t0) = v0 , x(t0) = x0
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The Algorithm 

forall particles i : 
 initialize xi, vi, mi 

 
Loop forever: 
 forall particles i : 

 
 
  
 forall particles i : 

 
 

 
 render system every n-th time 

 

f g  = gravitational force 

f coll = penalty force exerted by collision (e.g., with obstacles) 

fi � fg + fcoll
i +

�

j , (i ,j)�S

f(xi , vi , xj , vj)

vi += �t · fi
mi

xi += �t ·vi
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§  Advantages:  

§  Can be implemented very easily 

§  Fast execution per time step 

§  Disadvantages:  

§  Stable only for very small time steps 

-  Typically Δt ≈ 10-4 … 10-3 sec! 

§ With large time steps, additional energy is generated "out of thin air", 
until the system explodes J 

§  Example: overshooting when simulating a single spring 

§  Errors accumulate quickly 
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Example for the Instability of Euler Integration 

§  Consider the diferential equation 

§  The exact solution: 

§  Euler integration does this: 

§  Case                  : 

 
 
⇒  xt oscillates about 0,  but approaches 0 (hopefully) 

§  Case                :   ⇒  xt → ∞ ! 

ẋ(t) = �kx(t)

x(t) = x0 e�kt

x t+1 = x t + �t(�kx t)

�t > 1
k

x t+1 = x t (1� k�t)⇤ ⇥� ⌅
<0

�t > 2
k
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§  Visualization: 

§  Terminology: if k is large → the DE is called "stiff " 

§  The stiffer the DE, the smaller Δt  has to be 

time 

po
si

tio
n 

ẋ(t) = �x(t)
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Visualization of Error Accumulation 

§  Consider this DE: 

§  Exact solution: 

§  The solution by Euler integration 
moves in spirals outward, no 
matter how small Δt! 

§  Conclusion: Euler integration 
accumulates errors, no matter 
how small Δt! 

x(t) =

�
r cos(t + �)
r sin(t + �)

⇥

ẋ(t) =

✓
–x2

x1

◆
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Visualization of Differential Equations 

§  The general form of a DE: 

§  Visualization of f as a vector field: 

§  Notice: this vector field can vary over time! 

§  Solution of a boundary value problem = path through this field 

ẋ(t) = f( x(t), t )
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§  Runge-Kutta of order 2: 

§  Idea: approximate  f( x(t), t )  by a quadratic function that is defined at 
positions  x(t), x( t+ ½Δt ) and  v(t) 

§  The integrator (w/o proof): 

§  Runge-Kutta of order 4: 

§  The standard integrator among the explicit integration schemata 

§  Needs 4 function evaluations (i.e., force computations) per time step 

§ Order of convergence is:  e(�t) = O
�
�t4

⇥

a1 = v

t
a2 =

1

m
f(xt , vt)

b1 = v

t +
1

2
�ta2 b2 =

1

m
f

�
x

t +
1

2
�ta1, v

t +
1

2
�ta2

�

x

t+1 = x

t + �tb1 v

t+1 = v

t + �tb2
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§  Runge-Kutta of order 2: 

§  Runge-Kutta of order 4: 

Euler 
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Verlet Integration 

§  A general, alternative method to increase the order of 
convergence: utilizes values from history 

§  Verlet:  utilize  x(  t  -  Δt  )  

§  Derivation: 

§  Develop The taylor series in both time directions: 

 

x(t + �t) = x(t) + �t ẋ(t) +
1

2
�t2ẍ(t) +

1

6
�t3...x (t) + O

�
�t4

⇥

x(t ��t) = x(t)��t ẋ(t) +
1

2
�t2ẍ(t)� 1

6
�t3...x (t) + O

�
�t4

⇥
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§  Add both: 

 

  

 

§  Initialization: 

§  Remark: the velocity does not occur an more (explicitely) 

 

x(�t) = x(0) + �tv(0) +
1

2
�t2

� 1

m
f(x(0), v(0))

⇥
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Constraints 

§  Big advantage of Verlet over Euler & Runge-Kutta: 
it is very easy to handle constraints 

§  Definition: Constraint = some condition on position of one or 
more mass points 

§  Examples: 

1.  A point must not penetrate an obstacle 

2.  The distance between two points must be constant, 
or distance must be  ≤ some specific distance 
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§  Examples: 

§  Consider the constraint: 

1.  Perform one Verlet integration step →  

2.  Enforce the constraint:  

x1 x2 l0 

d d 

⇥x1 � x2⇥
!
= l0

x

t+1
1 = x̃

t+1
1 +

1

2
r12 ·

�
||x̃t+1

2 � x̃

t+1
1 ||� l0

�

x

t+1
2 = x̃

t+1
2 � 1

2
r12 ·

�
||x̃t+1

2 � x̃

t+1
1 ||� l0

�

| {z }
d

~ ~ 
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§  Problem: if several constraints are to constrain the same mass 
point, we need to employ constraint algorithms 

 


